Integrations
Integrations
End-to-end examples integrating Supacrawler with vector stores, LLM frameworks, and downstream tools
Integrations
Explore practical, end-to-end integrations using the Supacrawler SDKs with popular tools and platforms.
Popular Integrations
Link
LangChain + pgvector
Rapid prototyping pipelines for RAG with LangChain
Database
LlamaIndex + Supabase
Document loaders and storage with LlamaIndex
Database
Supabase Vector
Production-ready Postgres vector store with pgvector
Common Use Cases
RAG (Retrieval-Augmented Generation)
- Scrape website content with Supacrawler
- Embed documents using OpenAI/Cohere
- Store vectors in Supabase pgvector
- Query with semantic search
- Generate responses with LLM
Knowledge Base Sync
- Monitor docs with Watch API
- Crawl on changes
- Update vector store
- Refresh embeddings automatically
Content Pipeline
- Extract structured data with Parse API
- Transform with LangChain
- Load into data warehouse
- Analyze with BI tools
Getting Started
All integrations follow a similar pattern:
from supacrawler import SupacrawlerClient
# Step 1: Scrape content
client = SupacrawlerClient(api_key="your-api-key")
result = client.scrape("https://example.com", format="markdown")
# Step 2: Process with your framework
# (LangChain, LlamaIndex, etc.)
# Step 3: Store in vector database
# (Supabase, Pinecone, Weaviate, etc.)
import { SupacrawlerClient } from '@supacrawler/js'
// Step 1: Scrape content
const client = new SupacrawlerClient({ apiKey: 'your-api-key' })
const result = await client.scrape({ url: 'https://example.com' })
// Step 2: Process with your framework
// (LangChain.js, etc.)
// Step 3: Store in vector database
Supported Platforms
- LLM Frameworks: LangChain, LlamaIndex, Haystack
- Vector Stores: Supabase pgvector, Pinecone, Weaviate, Qdrant
- Embedding Models: OpenAI, Cohere, HuggingFace
- LLMs: OpenAI GPT, Anthropic Claude, Google Gemini
Was this page helpful?