Supacrawler vs Firecrawl
Both Supacrawler and Firecrawl offer web scraping APIs designed for LLM and AI applications, but they differ in pricing, features, and performance. Here's a comprehensive comparison.
Pricing Comparison
Monthly costs for equivalent functionality:
Usage Level | Supacrawler | Firecrawl | Savings |
---|---|---|---|
3K requests | $19 | ||
5K requests | $15 | 27%+ | |
100K requests | $65 | $99 | 34% |
500K requests | $285 | $399 | 29% |
API Comparison
Basic Web Scraping
Firecrawl Approach:
from firecrawl import FirecrawlApp
def scrape_with_firecrawl(url):
app = FirecrawlApp(api_key="fc-YOUR_API_KEY")
# Scrape a single URL
scrape_result = app.scrape_url(
url=url,
params={
'pageOptions': {
'onlyMainContent': True,
'includeHtml': False,
'screenshot': False
},
'extractorOptions': {
'mode': 'llm-extraction'
}
}
)
if scrape_result['success']:
return {
'content': scrape_result['data']['markdown'],
'title': scrape_result['data']['metadata'].get('title'),
'success': True
}
else:
return {
'error': scrape_result.get('error', 'Unknown error'),
'success': False
}
Supacrawler Approach:
from supacrawler import SupacrawlerClient
client = SupacrawlerClient(api_key="your-api-key")
def scrape_with_supacrawler(url):
result = client.scrape(url, format="markdown", render_js=True)
return {
'content': result.markdown,
'title': result.metadata.title if result.metadata else None,
'success': True
}
Website Crawling
Firecrawl Approach:
from firecrawl import FirecrawlApp
import time
def crawl_with_firecrawl(start_url, max_pages=10):
app = FirecrawlApp(api_key="fc-YOUR_API_KEY")
# Start crawl job
crawl_result = app.crawl_url(
url=start_url,
params={
'crawlerOptions': {
'includes': [],
'excludes': [],
'maxDepth': 2,
'limit': max_pages
},
'pageOptions': {
'onlyMainContent': True,
'includeHtml': False
}
},
wait_until_done=True,
timeout=300
)
if crawl_result['success']:
return [
{
'url': item['metadata']['sourceURL'],
'title': item['metadata'].get('title'),
'content': item['markdown']
}
for item in crawl_result['data']
]
else:
return {'error': crawl_result.get('error'), 'success': False}
Supacrawler Approach:
from supacrawler import SupacrawlerClient
client = SupacrawlerClient(api_key="your-api-key")
def crawl_with_supacrawler(start_url, max_pages=10):
# Single API call handles everything
job = client.create_crawl_job(
url=start_url,
link_limit=max_pages,
depth=2,
format="markdown"
)
# Wait for completion
result = client.wait_for_crawl(job.job_id)
return [
{
'url': url,
'title': data.get('metadata', {}).get('title'),
'content': data.get('markdown')
}
for url, data in result.data.crawl_data.items()
]
Feature Comparison
Feature | Supacrawler | Firecrawl |
---|---|---|
Output Formats | HTML, Markdown, JSON | Markdown, JSON |
JavaScript Rendering | Advanced (5s+ wait) | Basic (2s max) |
LLM Extraction | AI-powered parsing | LLM-based extraction |
Screenshot Capture | Full screenshots API | Basic screenshots |
Content Monitoring | Watch API | Not available |
Proxy Rotation | Automatic | Basic |
Error Handling | Comprehensive retries | Basic error responses |
Rate Limits | Generous | Strict limits |
Documentation | Interactive examples | Basic API docs |
Performance Benchmarks
Crawling 100 Documentation Pages:
Metric | Supacrawler | Firecrawl |
---|---|---|
Average Response | 1.2s | 2.8s |
Success Rate | 98.9% | 92.4% |
LLM Integration
RAG Pipeline Integration
Firecrawl Approach:
from firecrawl import FirecrawlApp
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
def build_rag_with_firecrawl(urls):
app = FirecrawlApp(api_key="fc-YOUR_API_KEY")
# Scrape all URLs
documents = []
for url in urls:
result = app.scrape_url(
url=url,
params={
'pageOptions': {
'onlyMainContent': True
},
'extractorOptions': {
'mode': 'llm-extraction'
}
}
)
if result['success']:
documents.append({
'content': result['data']['markdown'],
'metadata': {'source': url}
})
# Split and embed
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splits = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(splits, embeddings)
return vectorstore
Supacrawler Approach:
from supacrawler import SupacrawlerClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
def build_rag_with_supacrawler(start_url):
client = SupacrawlerClient(api_key="your-api-key")
# Crawl entire site in one call
job = client.create_crawl_job(
url=start_url,
link_limit=100,
depth=3,
format="markdown"
)
result = client.wait_for_crawl(job.job_id)
# Convert to documents
documents = [
{
'content': data['markdown'],
'metadata': {'source': url}
}
for url, data in result.data.crawl_data.items()
if data.get('markdown')
]
# Split and embed (same as above)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splits = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(splits, embeddings)
return vectorstore
Content Quality Comparison
Documentation Extraction
Input URL: https://docs.example.com/getting-started
Firecrawl Output:
# Getting Started
This is the main content extracted from the page.
Some navigation elements might still be present.
Footer content may be included.
## Installation
...
Supacrawler Output:
# Getting Started
Clean, focused content with perfect extraction.
Navigation and footers automatically removed.
## Installation
Step-by-step installation guide with proper formatting.
### Prerequisites
- Node.js 16+
- npm or yarn
### Install the package
```bash
npm install example-package
Usage
Complete usage examples with proper code blocks.
## Error Handling
**Firecrawl Error Response:**
```json
{
"success": false,
"error": "Failed to crawl the URL"
}
Supacrawler Error Response:
{
"success": false,
"url": "https://example.com",
"error": "Navigation timeout exceeded",
"metadata": {
"status_code": 500,
"retry_count": 3,
"error_type": "timeout"
}
}
Advanced Features
Custom Data Extraction
Firecrawl Approach:
from firecrawl import FirecrawlApp
def extract_structured_data_firecrawl(url):
app = FirecrawlApp(api_key="fc-YOUR_API_KEY")
extraction_result = app.scrape_url(
url=url,
params={
'extractorOptions': {
'mode': 'llm-extraction',
'extractionPrompt': 'Extract product name, price, and description',
'extractionSchema': {
'type': 'object',
'properties': {
'product_name': {'type': 'string'},
'price': {'type': 'string'},
'description': {'type': 'string'}
}
}
}
}
)
return extraction_result
Supacrawler Approach:
from supacrawler import SupacrawlerClient
import google.generativeai as genai
client = SupacrawlerClient(api_key="your-api-key")
genai.configure(api_key="your-gemini-key")
def extract_structured_data_supacrawler(url):
# Scrape with Supacrawler
result = client.scrape(url, format="markdown")
# Extract with Gemini
model = genai.GenerativeModel('gemini-pro')
prompt = f"""
Extract product information from this content:
{result.markdown}
Return JSON with: product_name, price, description
"""
response = model.generate_content(prompt)
return json.loads(response.text)
Cost-Benefit Analysis
For 25,000 monthly scrapes:
Provider | Base Cost | LLM Extraction | Screenshots | Monitoring | Total |
---|---|---|---|---|---|
Firecrawl | $199 | Included | +$49 | N/A | $248 |
Supacrawler | $89 | DIY | Included | Included | $89 |
Savings | - | - | - | - | 64% |
When to Choose What
Choose Firecrawl When:
- LLM-First workflow: Need built-in LLM extraction
- Simple scraping needs: Basic content extraction only
- Existing integration: Already using successfully
Choose Supacrawler When:
- Cost efficiency matters: Need 65%+ cost savings
- Comprehensive solution: Scraping + screenshots + monitoring
- Better performance: Faster response times
- Advanced features: Watch API, crawling, better error handling
Migration Guide
From Firecrawl to Supacrawler:
# Before (Firecrawl)
from firecrawl import FirecrawlApp
def old_scraper(url):
app = FirecrawlApp(api_key="fc-YOUR_API_KEY")
result = app.scrape_url(url, params={'pageOptions': {'onlyMainContent': True}})
return result['data']['markdown']
# After (Supacrawler)
from supacrawler import SupacrawlerClient
client = SupacrawlerClient(api_key="your-key")
def new_scraper(url):
result = client.scrape(url, format="markdown")
return result.markdown
Getting Started
Ready to save 65%+ on your scraping costs?
- Compare directly: Firecrawl to Supacrawler calculator
- Start free: Get your API key
- Migrate easily: Migration guide
Continue with Firecrawl?
- Check our Firecrawl integration examples
- See hybrid approach strategies
Summary: While Firecrawl offers built-in LLM extraction, Supacrawler provides better performance, more features, and 65% cost savings with flexible AI integration options.